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Exact bounded-error continuous-time linear state estimator

Consider the system:
Introduction

– linear, continuous, time-invariant
– measurements are collected at discrete times
– all errors are assumed to be intervals
– states are known to belong to some prior sets, possibly infinite

if nothing is known a priori.

Goal – obtain a state estimator:
– consistent with:

– the state equation
– the observations at discrete times (possibly uncertain)
– the related errors

– guaranteed to continuously enclose the state vectors
– and exact, since it does not introduce pessimism and does not

lose any consistent state
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Exact bounded-error continuous-time linear state estimator

State-of-the-art
Introduction

Linear systems usually treated in the discrete case:

� A new approach to linear filtering and prediction problems
R. E. Kalman, Tr. of the AMSE, Journal of Basic Engineering, 1960

� Recursive state estimation: unknown but bounded errors..
F. C. Schweppe, IEEE TAC, 1968

In the continuous case..

� Techniques for verified reachability analysis of quasi-linear
continuous-time systems
A. Rauh, J. Kersten, H. Aschemann, Intern. Conf. on MMAR, 2019

→ conservatism/overestimations mainly due to the fact that
necessary conditions are used, such as positivity, or wrapping
effects.
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Exact bounded-error continuous-time linear state estimator

Section 2

Exact sequence
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Exact bounded-error continuous-time linear state estimator

Flow expression
Exact sequence

Consider the linear time-invariant dynamical system

ẋ = Ax + Bu. (1)

The system is linear
→ an analytical expression for the flow is given by

Φ
u(·)
t1,t2

(x) = eA(t2−t1)x +

∫ t2

t1

eA(t2−τ)Bu(τ)dτ. (2)
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Exact bounded-error continuous-time linear state estimator

Continuous recursive state estimation
Exact sequence

For t ∈ [0, t̄], the state trajectory x(·) is known to be inside the
prior tube X̌(·).

Goal: compute recursively the smallest tube X(·) for x(·)
consistent with both the prior tube X̌(·) and the state equation.

→ Extension to continuous time systems of the state estimator
proposed in:

� Recursive state estimation for a set-membership description..
D. P. Bertsekas, I. B. Rhodes. IEEE TAC, 1971
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Exact bounded-error continuous-time linear state estimator

Continuous recursive state estimation
Exact sequence

Recursive expression of the states:

x2 = Φ
u(·)
t1,t2

(x1) (3)

The flow can be extended to sets:

Φ
u(·)
t1,t2

(X1) =
{

x2 | ∃x1 ∈ X1, x2 = Φ
u(·)
t1,t2

(x1)
}

(4)

x2(t1)

x1(t1)

t

x2(t2)

x1(t2)

X̌t1

Φ
u(·)
t1,t2(X̌t1)

t2t1
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Exact bounded-error continuous-time linear state estimator

Flow set properties
Exact sequence

Chasles property:

Φ
u(·)
t1,t3

(X1) = Φ
u(·)
t2,t3
◦Φ

u(·)
t1,t2

(X1) (5)

Automorphism property: given two sets Xa1,Xb1,

Φ
u(·)
t1,t2

(Xa1 ∩ Xb1) = Φ
u(·)
t1,t2

(Xa1) ∩Φ
u(·)
t1,t2

(Xb1) (6)
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Exact bounded-error continuous-time linear state estimator

Posterior state tube X̂(·)
Exact sequence

X̂(·) = smallest tube for x(·) consistent with the prior tube X̌(·),
the input u(·) and the state equation ẋ = f(x,u).

X̂t =
⋂

τ∈[0,t̄]

Φ
u(·)
τ,t (X̌τ ) (7)

x2(t1)

t

Φ
u(·)
t1,t2(X̌t1)

t2 t3t1
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Exact bounded-error continuous-time linear state estimator

State sets consistent with the future/past
Exact sequence

Define the set
−→
X t as the set of all x(t) consistent with the past

(before t) −→
X t =

⋂
τ∈[0,t]

Φ
u(·)
τ,t (X̌τ ) (8)

Define the set
←−
X t as the set of all x(t) consistent with the future

(after t) ←−
X t =

⋂
τ∈[t,t̄]

Φ
u(·)
τ,t (X̌τ ) (9)

Intersection at t:
X̂t =

−→
X t ∩

←−
X t (10)
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Exact bounded-error continuous-time linear state estimator

State sets consistent with the future/past
Exact sequence

x2(t1)

x1(t1)

Φ
u(·)
t3,t2(X̌t3)

t

x2(t2) x2(t3)

x1(t2) x1(t3)

X̌t1

Φ
u(·)
t1,t2(X̌t1)

X̌t3

X̂t2

t2 t3t1
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Exact bounded-error continuous-time linear state estimator

Recursive algorithm
Exact sequence

Given the sampling times of measurements

T = {0, δ, 2δ, . . . , k̄δ} = {t0, t1, t2, . . . , tk̄},

and a prior tube X̌(·) containing the actual state trajectory x(·).

The posterior tube X̂(·) can be defined recursively by

−→
X tk = Φ

u(·)
tk−1,tk

(
−→
X tk−1

) ∩ ⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

←−
X tk = Φ

u(·)
tk+1,tk

(
←−
X tk+1

) ∩ ⋂
τ∈[tk,tk+1]

Φ
u(·)
τ,tk

(X̌τ )

X̂tk =
−→
X tk ∩

←−
X tk

(11)

with
−→
X t0 = X̌(t0) and

←−
X tk̄ = X̌(tk̄).
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Exact bounded-error continuous-time linear state estimator

The input u(·) is uncertain
Exact sequence

Extension to the case where u(·) is uncertain but known to be
inside a tube U(·). The set flow becomes:

Φ
U(·)
t1,t2

(X1) =
⋃

u(·)∈U(·)

Φ
u(·)
t1,t2

(X1). (12)

This allows to consider bounded errors on the system input.
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Exact bounded-error continuous-time linear state estimator

Recursive algorithm (u(·) uncertain, u(·) ∈ U(·))
Exact sequence

Given the sampling times of measurements

T = {0, δ, 2δ, . . . , k̄δ} = {t0, t1, t2, . . . , tk̄},

and a prior tube X̌(·) containing the actual state trajectory x(·).
The posterior tube X̂(·) can be defined recursively by

−→
X tk = Φ

U(·)
tk−1,tk

(
−→
X tk−1

) ∩ ⋃
u(·)∈U(·)

⋂
τ∈[tk−1,tk]

Φ
u(·)
τ,tk

(X̌τ )

←−
X tk = Φ

U(·)
tk+1,tk

(
←−
X tk+1

) ∩ ⋃
u(·)∈U(·)

⋂
τ∈[tk,tk+1]

Φ
u(·)
τ,tk

(X̌τ )

X̂tk =
−→
X tk ∩

←−
X tk

(13)

with
−→
X t0 = X̌(t0) and

←−
X tk̄ = X̌(tk̄).

Exact sequence, valid even for non-linear systems
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Exact bounded-error continuous-time linear state estimator

Section 3

State estimator
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Exact bounded-error continuous-time linear state estimator

Exact formulation
State estimator

Exact sequence, valid even for non-linear systems
– depends on the flow Φ

– therefore, can be implemented exactly on a computer only in
the linear case

For linear systems, the flow is analytically given by:

Φ
u(·)
t1,t2

(x) = eA(t2−t1)x +

∫ t2

t1

eA(t2−τ)Bu(τ)dτ. (14)
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Exact bounded-error continuous-time linear state estimator

Exponential of an interval matrix
State estimator

Need to compute the exponential of an interval matrix [A] which
has to be understood with a set-theoretical meaning:

e[A] =
[{

B | ∃A ∈ [A],B = eA
}]

(15)

We also define the product:

[A] · X = [{y | ∃A ∈ [A], ∃x ∈ X, y = A · x}] (16)
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Exact bounded-error continuous-time linear state estimator

Computer implementation of U(·)
State estimator

We now consider a piecewise constant tube containing u(·):

U(·) = {u(·) | ∀k, ∀t ∈ [kδ, (k + 1)δ], u(t) ∈ [u]k}

where [u]k, k ∈ {0, . . . , k̄ − 1} is a slice of the tube U(·).

δ[u]2

·

U(·)

t

t1 t3
0

u(·)
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Exact bounded-error continuous-time linear state estimator

Exact formulation for the linear case
State estimator

Given the sampling times of measurements

T = {0, δ, 2δ, . . . , k̄δ} = {t0, t1, t2, . . . , tk̄},

a prior tube X̌(·) containing the state trajectory x(·), and a
piecewise constant tube U(·) containing u(·). We have

−→
X tk ⊂ X̌tk ∩

{
eAδ · −→X tk−1

+ δeA·[0,δ]B[u]k−1

}
←−
X tk ⊂ X̌tk ∩

{
e−Aδ · ←−X tk+1

−δe−A·[0,δ]B[u]k

}
X̂tk =

−→
X tk ∩

←−
X tk

(17)

with
−→
X t0 = X̌t0 and

←−
X tk̄ = X̌tk̄ .

Rohou, Jaulin 22/11/2022 20 / 36



Exact bounded-error continuous-time linear state estimator

Exact implementation: polygonal sequence
State estimator

We have defined a reliable enclosure from a bounded input U(·),
that can be numerically represented and guaranteed to enclose u(·).

It remains to reliably compute the sets X.

tk

tk+1

δ

Pk Pk:k+1
Pk+1

x2

x1

→ We use polygons{
X̂tk ⊂ Pk,
∀t ∈ [tk, tk+1], X̂t ⊂ Pk:k+1.
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Exact implementation: polygonal sequence
State estimator

We apply the following polygonal sequence:

I first, forward in time, for k ∈ {1, . . . , k̄}:

−→
X tk ⊂ X̌tk ∩

{
eAδ · −→X tk−1

+ δeA·[0,δ]B[u]k−1

}
,

{
I then, backward in time, for k ∈ {k̄ − 1, . . . , 0}:

←−
X tk ⊂ X̌tk ∩

{
e−Aδ · ←−X tk+1

−δe−A·[0,δ]B[u]k

}
,

{
I finally, between the sampling times, k ∈ {0, . . . , k̄ − 1}:

X̂tk =
−→
X tk ∩

←−
X tk .

{{
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Exact implementation: polygonal sequence
State estimator

We apply the following polygonal sequence:

I first, forward in time, for k ∈ {1, . . . , k̄}:

Pk := Pk ∩
{
eAδ · Pk−1 + δeA·[0,δ]B[u]k−1

}
,

{
I then, backward in time, for k ∈ {k̄ − 1, . . . , 0}:

Pk := Pk ∩
{
e−Aδ · Pk+1 − δe−A·[0,δ]B[u]k

}
,

{
I finally, between the sampling times, k ∈ {0, . . . , k̄ − 1}:

Pk:k+1 =
{
eA[0,δ] · Pk + [0, δ]eA·[0,δ]B[u]k

}
.

{
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Section 4

Test case
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Application: moving 1d car
Test case

Consider the linear system:{
ẋ1 = x2

ẋ2 = −x1 − x2 + u
, (18)

and the input bounded as:

u ∈ cos(t) + sin(t/3) + t/10 + [−0.1, 0.1]. (19)

The initial condition is considered unknown. Its actual value is:

x(0) = 0. (20)
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State observations
Test case

Direct measurements of the state vector (ỹ1, ỹ2) are provided at
times ti ∈ [0, t] as given below:

Table: State observation vectors ỹ(ti).

ti 2/3 1.9 2.99 4.33 6.4 6.5 6.6 9.0

ỹ1 0.188 0.783 0.728 0.380 1.747 1.844 1.937 1.700

ỹ2 0.493 0.261 −0.308 0.009 0.976 0.947 0.909 −1.121

– ti’s are not necessarily consistent with the sampling times kδ
– measurement errors are assumed to be 0.01, i.e.,
∀ti,x(ti) ∈ ỹ(ti) + [−0.01, 0.01]2.

→ Restrictions on the prior tube P(·), i.e. X̌(·)
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Exact bounded-error continuous-time linear state estimator

Resulting polygonal envelop
Test case

Forward computation
One observation
δ = 0.01

Computation time: ∼2s

Enclosure of x(0)
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Resulting polygonal envelop
Test case

Forward computation
All observations
δ = 0.01

Computation time: ∼2s

Enclosure of x(0)
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Resulting polygonal envelop
Test case

Forward/backward
All observations
δ = 0.01

Computation time: ∼2s

Enclosure of x(0)
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Convergence to exact enclosure, with respect to δ
Test case

0 2 4 6 8 10

0.01

0.03

0.05

0.07

0.09

t

v(Pk)

δ = 0.1

0

0.2

0.4

0.6

0.8

δ

v(P(·))

0.10.010.0010.0001

..
Rohou, Jaulin 22/11/2022 27 / 36



Exact bounded-error continuous-time linear state estimator

Section 5

Conclusion
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Exact bounded-error continuous-time linear state estimator

Outline
Conclusion

New state estimator to approximate the state of a continuous-time
linear system in a set-membership context, with a set of discrete
measurements.

The proposed method is:
– accurate:

direct extension of the exact method used for discrete time systems,

– guaranteed:
propagation of uncertainties made by interval analysis,

– exact if δ infinitely small,
since it does not introduce any pessimism.
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Exact bounded-error continuous-time linear state estimator

Limits
Conclusion

On dimensions:
– polygonal implementation → difficult task, restricted to 2d

cases at the moment

On computation time:
– number of vertices: simplification of polygons.

On systems:
– the method cannot be extended directly to non-linear systems,
– the system must be time-invariant (computation of eAt).
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Exact bounded-error continuous-time linear state estimator

Alternative to polygons: ellipsoids
Conclusion

Collaboration with Andreas Rauh.

� An ellipsoidal predictor-corrector state estimation scheme for
linear continuous-time systems with bounded parameters and
bounded measurement errors
A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022
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Exact bounded-error continuous-time linear state estimator

Code example – Codac library – (C++, Python available)
Conclusion

/∗ =========== PROBLEM DEFINITION =========== ∗/

double dt = 0.01;
auto tdomain = create_tdomain(Interval(0,10), dt, true) ;

TFunction f_u("cos(t)");

Matrix A({{0,1},{−1,−1}});
Vector b({0,1});

//
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Code example – Codac library – (C++, Python available)
Conclusion

/∗ =========== PROBLEM DEFINITION =========== ∗/

double dt = 0.01;
auto tdomain = create_tdomain(Interval(0,10), dt, true) ;

TFunction f_u("cos(t)");

Matrix A({{0,1},{−1,−1}});
Vector b({0,1});

/∗ =========== SIMULATING THE TRUTH =========== ∗/

TrajectoryVector x_truth(tdomain−>t0_tf(), TFunction("( \
sin (t) − (2∗exp(−t/2)∗sin((sqrt(3)∗t)/2))/sqrt(3) ; \
exp(−t/2)∗sin(sqrt(3)∗t/2)/sqrt(3)−sin(t)/2+sin(t)/2+cos(t)−exp(−t/2)∗cos(sqrt(3)∗t/2)\
)"), dt/10.) ;

//
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Code example – Codac library – (C++, Python available)
Conclusion

/∗ =========== PROBLEM DEFINITION =========== ∗/

double dt = 0.01;
auto tdomain = create_tdomain(Interval(0,10), dt, true) ;

TFunction f_u("cos(t)");

Matrix A({{0,1},{−1,−1}});
Vector b({0,1});

/∗ =========== SIMULATING THE TRUTH =========== ∗/

TrajectoryVector x_truth(tdomain−>t0_tf(), TFunction("( \
sin (t) − (2∗exp(−t/2)∗sin((sqrt(3)∗t)/2))/sqrt(3) ; \
exp(−t/2)∗sin(sqrt(3)∗t/2)/sqrt(3)−sin(t)/2+sin(t)/2+cos(t)−exp(−t/2)∗cos(sqrt(3)∗t/2)\
)"), dt/10.) ;

/∗ =========== CREATING TUBES =========== ∗/

Tube<ConvexPolygon> x(tdomain);
x. set(ConvexPolygon(Vector({0.,0.})) , 0.) ; // setting initial condition
Tube<Interval> u(tdomain, f_u);
u. inflate (0.1) ; // u∗ + [−0.1,0.1]

//
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Code example – Codac library – (C++, Python available)
Conclusion

/∗ =========== PROBLEM DEFINITION =========== ∗/

double dt = 0.01;
auto tdomain = create_tdomain(Interval(0,10), dt, true) ;

TFunction f_u("cos(t)");

Matrix A({{0,1},{−1,−1}});
Vector b({0,1});

/∗ =========== SIMULATING THE TRUTH =========== ∗/

TrajectoryVector x_truth(tdomain−>t0_tf(), TFunction("( \
sin (t) − (2∗exp(−t/2)∗sin((sqrt(3)∗t)/2))/sqrt(3) ; \
exp(−t/2)∗sin(sqrt(3)∗t/2)/sqrt(3)−sin(t)/2+sin(t)/2+cos(t)−exp(−t/2)∗cos(sqrt(3)∗t/2)\
)"), dt/10.) ;

/∗ =========== CREATING TUBES =========== ∗/

Tube<ConvexPolygon> x(tdomain);
x. set(ConvexPolygon(Vector({0.,0.})) , 0.) ; // setting initial condition
Tube<Interval> u(tdomain, f_u);
u. inflate (0.1) ; // u∗ + [−0.1,0.1]

/∗ =========== CONTRACTING THE POLYGON TUBE =========== ∗/

CtcLinobs ctc_linobs(A, b);
ctc_linobs . contract(x, u, TimePropag::FORWARD | TimePropag::BACKWARD);
//

Rohou, Jaulin 22/11/2022 35 / 36



Exact bounded-error continuous-time linear state estimator

Conclusion

� Exact bounded-error continuous-time linear state estimator
S. Rohou, L. Jaulin, Systems & Control Letters, 2021

Questions?
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