Exact bounded-error continuous-time linear state estimator

Simon Rohou, Luc Jaulin

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

 $\begin{array}{c} \mbox{AID Nov 2022} \\ 22^{\rm nd} \mbox{ November 2022} \end{array}$

Section 1

Introduction

Introduction

Consider the system:

- linear, continuous, time-invariant
- measurements are collected at discrete times
- all errors are assumed to be intervals
- states are known to belong to some prior sets, possibly infinite if nothing is known *a priori*.

Introduction

Consider the system:

- linear, continuous, time-invariant
- measurements are collected at discrete times
- all errors are assumed to be intervals
- states are known to belong to some prior sets, possibly infinite if nothing is known *a priori*.

Goal – obtain a state estimator:

- consistent with:
 - the state equation
 - the observations at discrete times (possibly uncertain)
 - the related errors
- guaranteed to *continuously* enclose the state vectors
- and exact, since it does not introduce pessimism and does not lose any consistent state

Introduction State-of-the-art

Linear systems usually treated in the discrete case:

A new approach to linear filtering and prediction problems R. E. Kalman, *Tr. of the AMSE, Journal of Basic Engineering*, 1960

Recursive state estimation: unknown but bounded errors..
 F. C. Schweppe, *IEEE TAC*, 1968

Introduction State-of-the-art

Linear systems usually treated in the discrete case:

A new approach to linear filtering and prediction problems R. E. Kalman, *Tr. of the AMSE, Journal of Basic Engineering*, 1960

Recursive state estimation: unknown but bounded errors..
 F. C. Schweppe, *IEEE TAC*, 1968

In the continuous case ...

■ Techniques for verified reachability analysis of quasi-linear continuous-time systems

A. Rauh, J. Kersten, H. Aschemann, Intern. Conf. on MMAR, 2019

 \rightarrow conservatism/overestimations mainly due to the fact that necessary conditions are used, such as positivity, or wrapping effects.

Section 2

Exact sequence

Exact sequence Flow expression

Consider the linear time-invariant dynamical system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}.$$
(1)

The system is linear \rightarrow an analytical expression for the flow is given by

$$\mathbf{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}) = e^{\mathbf{A}(t_2-t_1)}\mathbf{x} + \int_{t_1}^{t_2} e^{\mathbf{A}(t_2-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau.$$
 (2)

Continuous recursive state estimation

For $t\in[0,\bar{t}],$ the state trajectory $\mathbf{x}(\cdot)$ is known to be inside the prior tube $\check{\mathbb{X}}(\cdot).$

Goal: compute recursively the smallest tube $\mathbb{X}(\cdot)$ for $\mathbf{x}(\cdot)$ consistent with both the prior tube $\check{\mathbb{X}}(\cdot)$ and the state equation.

 \rightarrow Extension to continuous time systems of the state estimator proposed in:

Recursive state estimation for a set-membership description..
 D. P. Bertsekas, I. B. Rhodes. *IEEE TAC*, 1971

Continuous recursive state estimation

Recursive expression of the states:

$$\mathbf{x}_2 = \boldsymbol{\Phi}_{t_1, t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}_1) \tag{3}$$

Continuous recursive state estimation

Recursive expression of the states:

$$\mathbf{x}_2 = \boldsymbol{\Phi}_{t_1, t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}_1) \tag{3}$$

The flow can be extended to sets:

$$\boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1) = \left\{ \mathbf{x}_2 \mid \exists \mathbf{x}_1 \in \mathbb{X}_1, \ \mathbf{x}_2 = \boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}_1) \right\}$$
(4)

Continuous recursive state estimation

Recursive expression of the states:

$$\mathbf{x}_2 = \boldsymbol{\Phi}_{t_1, t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}_1) \tag{3}$$

The flow can be extended to sets:

$$\mathbf{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1) = \left\{ \mathbf{x}_2 \mid \exists \mathbf{x}_1 \in \mathbb{X}_1, \ \mathbf{x}_2 = \mathbf{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}_1) \right\}$$
(4)

Rohou, Jaulin

22/11/2022 8 / 36

Continuous recursive state estimation

Recursive expression of the states:

$$\mathbf{x}_2 = \boldsymbol{\Phi}_{t_1, t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}_1) \tag{3}$$

The flow can be extended to sets:

Rohou, Jaulin

22/11/2022 8 / 36

Flow set properties

Chasles property:

$$\boldsymbol{\Phi}_{t_1,t_3}^{\mathbf{u}(\cdot)}(\mathbb{X}_1) = \boldsymbol{\Phi}_{t_2,t_3}^{\mathbf{u}(\cdot)} \circ \boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1)$$
(5)

Flow set properties

Chasles property:

$$\boldsymbol{\Phi}_{t_1,t_3}^{\mathbf{u}(\cdot)}(\mathbb{X}_1) = \boldsymbol{\Phi}_{t_2,t_3}^{\mathbf{u}(\cdot)} \circ \boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1)$$
(5)

Automorphism property: given two sets $\mathbb{X}_1^a, \mathbb{X}_1^b$,

$$\boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1^a \cap \mathbb{X}_1^b) = \boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1^a) \cap \boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1^b)$$
(6)

Posterior state tube $\hat{\mathbb{X}}(\cdot)$

 $\hat{\mathbb{X}}(\cdot) = \text{smallest tube for } \mathbf{x}(\cdot) \text{ consistent with the prior tube } \check{\mathbb{X}}(\cdot),$ the input $\mathbf{u}(\cdot)$ and the state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}).$

$$\hat{\mathbb{X}}_{t} = \bigcap_{\tau \in [0,\bar{t}]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(7)

Posterior state tube $\hat{\mathbb{X}}(\cdot)$

 $\hat{\mathbb{X}}(\cdot) = \text{smallest tube for } \mathbf{x}(\cdot) \text{ consistent with the prior tube } \check{\mathbb{X}}(\cdot),$ the input $\mathbf{u}(\cdot)$ and the state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}).$

$$\hat{\mathbb{X}}_t = \bigcap_{\tau \in [0,\bar{t}]} \Phi_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(7)

Posterior state tube $\hat{\mathbb{X}}(\cdot)$

 $\hat{\mathbb{X}}(\cdot) = \text{smallest tube for } \mathbf{x}(\cdot) \text{ consistent with the prior tube } \check{\mathbb{X}}(\cdot),$ the input $\mathbf{u}(\cdot)$ and the state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}).$

$$\hat{\mathbb{X}}_{t} = \bigcap_{\tau \in [0,\bar{t}]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(7)

Posterior state tube $\hat{\mathbb{X}}(\cdot)$

 $\hat{\mathbb{X}}(\cdot) = \text{smallest tube for } \mathbf{x}(\cdot) \text{ consistent with the prior tube } \check{\mathbb{X}}(\cdot),$ the input $\mathbf{u}(\cdot)$ and the state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}).$

$$\hat{\mathbb{X}}_{t} = \bigcap_{\tau \in [0,\bar{t}]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(7)

22/11/2022 10 / 36

Posterior state tube $\hat{\mathbb{X}}(\cdot)$

 $\hat{\mathbb{X}}(\cdot) = \text{smallest tube for } \mathbf{x}(\cdot) \text{ consistent with the prior tube } \check{\mathbb{X}}(\cdot),$ the input $\mathbf{u}(\cdot)$ and the state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}).$

$$\hat{\mathbb{X}}_{t} = \bigcap_{\tau \in [0,\bar{t}]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(7)

Rohou, Jaulin

22/11/2022 10 / 36

State sets consistent with the future/past

Define the set $\overrightarrow{\mathbb{X}}_t$ as the set of all $\mathbf{x}(t)$ consistent with the past (before t)

$$\vec{\mathbb{X}}_{t} = \bigcap_{\tau \in [0,t]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\tilde{\mathbb{X}}_{\tau})$$
(8)

State sets consistent with the future/past

Define the set $\overrightarrow{\mathbb{X}}_t$ as the set of all $\mathbf{x}(t)$ consistent with the past (before t)

$$\vec{\mathbb{X}}_t = \bigcap_{\tau \in [0,t]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(8)

Define the set $\overleftarrow{\mathbb{X}}_t$ as the set of all $\mathbf{x}(t)$ consistent with the future (after t)

$$\overleftarrow{\mathbb{X}}_{t} = \bigcap_{\tau \in [t,\bar{t}]} \mathbf{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(9)

State sets consistent with the future/past

Define the set $\overrightarrow{\mathbb{X}}_t$ as the set of all $\mathbf{x}(t)$ consistent with the past (before t)

$$\vec{\mathbb{X}}_t = \bigcap_{\tau \in [0,t]} \boldsymbol{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(8)

Define the set $\overleftarrow{\mathbb{X}}_t$ as the set of all $\mathbf{x}(t)$ consistent with the future (after t)

$$\overleftarrow{\mathbb{X}}_{t} = \bigcap_{\tau \in [t,\bar{t}]} \mathbf{\Phi}_{\tau,t}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau})$$
(9)

Intersection at t:

$$\hat{\mathbb{X}}_t = \overrightarrow{\mathbb{X}}_t \cap \overleftarrow{\mathbb{X}}_t \tag{10}$$

State sets consistent with the future/past

Recursive algorithm

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

and a prior tube $\check{\mathbb{X}}(\cdot)$ containing the actual state trajectory $\mathbf{x}(\cdot).$

Recursive algorithm

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

$$\vec{\mathbb{X}}_{t_{k}} = \Phi_{t_{k-1},t_{k}}^{\mathbf{u}(\cdot)}(\vec{\mathbb{X}}_{t_{k-1}}) \cap \bigcap_{\tau \in [t_{k-1},t_{k}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\check{\mathbb{X}}_{\tau})$$
(11)

Recursive algorithm

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

$$\overrightarrow{\mathbb{X}}_{t_{k}} = \Phi_{t_{k-1},t_{k}}^{\mathbf{u}(\cdot)}(\overrightarrow{\mathbb{X}}_{t_{k-1}}) \cap \bigcap_{\tau \in [t_{k-1},t_{k}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau})$$

$$\overleftarrow{\mathbb{X}}_{t_{k}} = \Phi_{t_{k+1},t_{k}}^{\mathbf{u}(\cdot)}(\overleftarrow{\mathbb{X}}_{t_{k+1}}) \cap \bigcap_{\tau \in [t_{k},t_{k+1}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau})$$

$$(11)$$

Recursive algorithm

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

$$\overrightarrow{\mathbb{X}}_{t_{k}} = \boldsymbol{\Phi}_{t_{k-1},t_{k}}^{\mathbf{u}(\cdot)}(\overrightarrow{\mathbb{X}}_{t_{k-1}}) \cap \bigcap_{\tau \in [t_{k-1},t_{k}]} \boldsymbol{\Phi}_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\widecheck{\mathbb{X}}_{\tau})$$

$$\overleftarrow{\mathbb{X}}_{t_{k}} = \boldsymbol{\Phi}_{t_{k+1},t_{k}}^{\mathbf{u}(\cdot)}(\overleftarrow{\mathbb{X}}_{t_{k+1}}) \cap \bigcap_{\tau \in [t_{k},t_{k+1}]} \boldsymbol{\Phi}_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\widecheck{\mathbb{X}}_{\tau}) \quad (11)$$

$$\widehat{\mathbb{X}}_{t_{k}} = \overrightarrow{\mathbb{X}}_{t_{k}} \cap \overleftarrow{\mathbb{X}}_{t_{k}}$$

Recursive algorithm

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

$$\overrightarrow{\mathbb{X}}_{t_{k}} = \boldsymbol{\Phi}_{t_{k-1},t_{k}}^{\mathbf{u}(\cdot)}(\overrightarrow{\mathbb{X}}_{t_{k-1}}) \cap \bigcap_{\tau \in [t_{k-1},t_{k}]} \boldsymbol{\Phi}_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau})$$

$$\overleftarrow{\mathbb{X}}_{t_{k}} = \boldsymbol{\Phi}_{t_{k+1},t_{k}}^{\mathbf{u}(\cdot)}(\overleftarrow{\mathbb{X}}_{t_{k+1}}) \cap \bigcap_{\tau \in [t_{k},t_{k+1}]} \boldsymbol{\Phi}_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau}) \quad (11)$$

$$\widehat{\mathbb{X}}_{t_{k}} = \overrightarrow{\mathbb{X}}_{t_{k}} \cap \overleftarrow{\mathbb{X}}_{t_{k}}$$

with
$$\overline{\mathbb{X}}_{t_0} = \check{\mathbb{X}}(t_0)$$
 and $\overleftarrow{\mathbb{X}}_{t_{\bar{k}}} = \check{\mathbb{X}}(t_{\bar{k}}).$

Exact sequence The input $\mathbf{u}(\cdot)$ is uncertain

Extension to the case where $\mathbf{u}(\cdot)$ is uncertain but known to be inside a tube $\mathbb{U}(\cdot).$ The set flow becomes:

$$\boldsymbol{\Phi}_{t_1,t_2}^{\mathbb{U}(\cdot)}(\mathbb{X}_1) = \bigcup_{\mathbf{u}(\cdot)\in\mathbb{U}(\cdot)} \boldsymbol{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbb{X}_1).$$
(12)

This allows to consider bounded errors on the system input.

Recursive algorithm $(\mathbf{u}(\cdot) \text{ uncertain}, \mathbf{u}(\cdot) \in \mathbb{U}(\cdot))$

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

and a prior tube $\check{\mathbb{X}}(\cdot)$ containing the actual state trajectory $\mathbf{x}(\cdot).$ The posterior tube $\hat{\mathbb{X}}(\cdot)$ can be defined recursively by

$$\overrightarrow{\mathbb{X}}_{t_{k}} = \Phi_{t_{k-1},t_{k}}^{\mathbb{U}(\cdot)}(\overrightarrow{\mathbb{X}}_{t_{k-1}}) \cap \bigcup_{\mathbf{u}(\cdot)\in\mathbb{U}(\cdot)} \bigcap_{\tau\in[t_{k-1},t_{k}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau})$$

$$\overleftarrow{\mathbb{X}}_{t_{k}} = \Phi_{t_{k+1},t_{k}}^{\mathbb{U}(\cdot)}(\overleftarrow{\mathbb{X}}_{t_{k+1}}) \cap \bigcup_{\mathbf{u}(\cdot)\in\mathbb{U}(\cdot)} \bigcap_{\tau\in[t_{k},t_{k+1}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau}) \quad (13)$$

$$\widehat{\mathbb{X}}_{t_{k}} = \overrightarrow{\mathbb{X}}_{t_{k}} \cap \overleftarrow{\mathbb{X}}_{t_{k}}$$
ith $\overrightarrow{\mathbb{X}}_{t_{0}} = \breve{\mathbb{X}}(t_{0})$ and $\overleftarrow{\mathbb{X}}_{t_{\bar{k}}} = \breve{\mathbb{X}}(t_{\bar{k}}).$

w

Recursive algorithm $(\mathbf{u}(\cdot) \text{ uncertain}, \mathbf{u}(\cdot) \in \mathbb{U}(\cdot))$

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

and a prior tube $\check{\mathbb{X}}(\cdot)$ containing the actual state trajectory $\mathbf{x}(\cdot).$ The posterior tube $\hat{\mathbb{X}}(\cdot)$ can be defined recursively by

$$\begin{aligned} \overrightarrow{\mathbb{X}}_{t_{k}} &= \Phi_{t_{k-1},t_{k}}^{\mathbb{U}(\cdot)}(\overrightarrow{\mathbb{X}}_{t_{k-1}}) \cap \bigcup_{\mathbf{u}(\cdot) \in \mathbb{U}(\cdot)} \bigcap_{\tau \in [t_{k-1},t_{k}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau}) \\ \overleftarrow{\mathbb{X}}_{t_{k}} &= \Phi_{t_{k+1},t_{k}}^{\mathbb{U}(\cdot)}(\overleftarrow{\mathbb{X}}_{t_{k+1}}) \cap \bigcup_{\mathbf{u}(\cdot) \in \mathbb{U}(\cdot)} \bigcap_{\tau \in [t_{k},t_{k+1}]} \Phi_{\tau,t_{k}}^{\mathbf{u}(\cdot)}(\breve{\mathbb{X}}_{\tau}) \quad (13) \\ \widehat{\mathbb{X}}_{t_{k}} &= \overrightarrow{\mathbb{X}}_{t_{k}} \cap \overleftarrow{\mathbb{X}}_{t_{k}} \\ \text{with } \overrightarrow{\mathbb{X}}_{t_{0}} = \breve{\mathbb{X}}(t_{0}) \text{ and } \overleftarrow{\mathbb{X}}_{t_{\bar{k}}} = \breve{\mathbb{X}}(t_{\bar{k}}). \end{aligned}$$

Exact sequence, valid even for non-linear systems

Section 3

State estimator

State estimator Exact formulation

Exact sequence, valid even for non-linear systems

- depends on the flow Φ
- therefore, can be implemented exactly on a computer only in the linear case

State estimator Exact formulation

Exact sequence, valid even for non-linear systems

- depends on the flow Φ
- therefore, can be implemented exactly on a computer only in the linear case

For linear systems, the flow is analytically given by:

$$\mathbf{\Phi}_{t_1,t_2}^{\mathbf{u}(\cdot)}(\mathbf{x}) = e^{\mathbf{A}(t_2-t_1)}\mathbf{x} + \int_{t_1}^{t_2} e^{\mathbf{A}(t_2-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau.$$
(14)

Exponential of an interval matrix

Need to compute the exponential of an interval matrix $[{\bf A}]$ which has to be understood with a set-theoretical meaning:

$$e^{[\mathbf{A}]} = \left[\left\{ \mathbf{B} \mid \exists \mathbf{A} \in [\mathbf{A}], \mathbf{B} = e^{\mathbf{A}} \right\} \right]$$
(15)

Exponential of an interval matrix

Need to compute the exponential of an interval matrix $[{\bf A}]$ which has to be understood with a set-theoretical meaning:

$$e^{[\mathbf{A}]} = \left[\left\{ \mathbf{B} \mid \exists \mathbf{A} \in [\mathbf{A}], \mathbf{B} = e^{\mathbf{A}} \right\} \right]$$
(15)

We also define the product:

$$[\mathbf{A}] \cdot \mathbb{X} = [\{\mathbf{y} \mid \exists \mathbf{A} \in [\mathbf{A}], \exists \mathbf{x} \in \mathbb{X}, \mathbf{y} = \mathbf{A} \cdot \mathbf{x}\}]$$
(16)

Computer implementation of $\mathbb{U}(\cdot)$

We now consider a piecewise constant tube containing $\mathbf{u}(\cdot) {:}$

$$\mathbb{U}(\cdot) = \{\mathbf{u}(\cdot) \mid \forall k, \forall t \in [k\delta, (k+1)\delta], \ \mathbf{u}(t) \in [\mathbf{u}]_k\}$$

where $[\mathbf{u}]_k, k \in \{0, \dots, \bar{k} - 1\}$ is a slice of the tube $\mathbb{U}(\cdot)$.

Exact formulation for the linear case

Given the sampling times of measurements

$$\mathbb{T} = \{0, \delta, 2\delta, \dots, \bar{k}\delta\} = \{t_0, t_1, t_2, \dots, t_{\bar{k}}\},\$$

a prior tube $\check{\mathbb{X}}(\cdot)$ containing the state trajectory $\mathbf{x}(\cdot)$, and a piecewise constant tube $\mathbb{U}(\cdot)$ containing $\mathbf{u}(\cdot)$. We have

$$\vec{\mathbb{X}}_{t_{k}} \subset \check{\mathbb{X}}_{t_{k}} \cap \left\{ e^{\mathbf{A}\delta} \cdot \vec{\mathbb{X}}_{t_{k-1}} + \delta e^{\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_{k-1} \right\} \\
\vec{\mathbb{X}}_{t_{k}} \subset \check{\mathbb{X}}_{t_{k}} \cap \left\{ e^{-\mathbf{A}\delta} \cdot \overleftarrow{\mathbb{X}}_{t_{k+1}} - \delta e^{-\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_{k} \right\} \quad (17)$$

$$\hat{\mathbb{X}}_{t_{k}} = \vec{\mathbb{X}}_{t_{k}} \cap \overleftarrow{\mathbb{X}}_{t_{k}}$$

with
$$\overrightarrow{\mathbb{X}}_{t_0} = \widecheck{\mathbb{X}}_{t_0}$$
 and $\overleftarrow{\mathbb{X}}_{t_{\bar{k}}} = \widecheck{\mathbb{X}}_{t_{\bar{k}}}$.

Exact implementation: polygonal sequence

We have defined a reliable enclosure from a bounded input $\mathbb{U}(\cdot)$, that can be numerically represented and guaranteed to enclose $u(\cdot).$

It remains to reliably compute the sets \mathbb{X} .

Exact implementation: polygonal sequence

We have defined a reliable enclosure from a bounded input $\mathbb{U}(\cdot)$, that can be numerically represented and guaranteed to enclose $u(\cdot).$

It remains to reliably compute the sets \mathbb{X} .

Exact implementation: polygonal sequence

We apply the following *polygonal sequence*:

• first, forward in time, for $k \in \{1, \ldots, \bar{k}\}$:

$$\overrightarrow{\mathbb{X}}_{t_k} \subset \check{\mathbb{X}}_{t_k} \cap \bigg\{ e^{\mathbf{A}\delta} \cdot \overrightarrow{\mathbb{X}}_{t_{k-1}} + \delta e^{\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_{k-1} \bigg\},\$$

▶ then, backward in time, for $k \in \{\bar{k} - 1, \dots, 0\}$:

$$\overleftarrow{\mathbb{X}}_{t_k} \subset \check{\mathbb{X}}_{t_k} \cap \bigg\{ e^{-\mathbf{A}\delta} \cdot \overleftarrow{\mathbb{X}}_{t_{k+1}} - \delta e^{-\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_k \bigg\},\$$

• finally, between the sampling times, $k \in \{0, \dots, \bar{k} - 1\}$:

$$\hat{\mathbb{X}}_{t_k} = \overrightarrow{\mathbb{X}}_{t_k} \cap \overleftarrow{\mathbb{X}}_{t_k}$$

Exact implementation: polygonal sequence

We apply the following *polygonal sequence*:

• first, forward in time, for $k \in \{1, \ldots, \bar{k}\}$:

$$\mathcal{P}_{k} := \mathcal{P}_{k} \cap \bigg\{ e^{\mathbf{A}\delta} \cdot \mathcal{P}_{k-1} + \delta e^{\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_{k-1} \bigg\},\$$

▶ then, backward in time, for $k \in \{\bar{k} - 1, \dots, 0\}$:

$$\mathcal{P}_k := \mathcal{P}_k \cap \left\{ e^{-\mathbf{A}\delta} \cdot \mathcal{P}_{k+1} - \delta e^{-\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_k \right\} ,$$

• finally, between the sampling times, $k \in \{0, \dots, \bar{k} - 1\}$:

$$\mathcal{P}_{k:k+1} = \left\{ e^{\mathbf{A}[0,\delta]} \cdot \mathcal{P}_k + [0,\delta] e^{\mathbf{A} \cdot [0,\delta]} \mathbf{B}[\mathbf{u}]_k \right\}.$$

Section 4

Test case

Application: moving 1d car

Consider the linear system:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 - x_2 + u \end{cases},$$
 (18)

and the input bounded as:

$$u \in \cos(t) + \sin(t/3) + t/10 + [-0.1, 0.1].$$
 (19)

The initial condition is considered unknown. Its actual value is:

$$\mathbf{x}(0) = \mathbf{0}.\tag{20}$$

State observations

Direct measurements of the state vector $(\tilde{y}_1, \tilde{y}_2)$ are provided at times $t_i \in [0, \bar{t}]$ as given below:

Table: State observation vectors $\tilde{\mathbf{y}}(t_i)$.

t_i	2/3	1.9	2.99	4.33	6.4	6.5	6.6	9.0
$ ilde{y}_1$	0.188	0.783	0.728	0.380	1.747	1.844	1.937	1.700
\tilde{y}_2	0.493	0.261	-0.308	0.009	0.976	0.947	0.909	-1.121

- t_i 's are not necessarily consistent with the sampling times $k\delta$
- measurement errors are assumed to be 0.01, *i.e.*, $\forall t_i, \mathbf{x}(t_i) \in \tilde{\mathbf{y}}(t_i) + [-0.01, 0.01]^2$.

State observations

Direct measurements of the state vector $(\tilde{y}_1, \tilde{y}_2)$ are provided at times $t_i \in [0, \bar{t}]$ as given below:

Table: State observation vectors $\tilde{\mathbf{y}}(t_i)$.

t_i	2/3	1.9	2.99	4.33	6.4	6.5	6.6	9.0
$ ilde{y}_1$	0.188	0.783	0.728	0.380	1.747	1.844	1.937	1.700
\tilde{y}_2	0.493	0.261	-0.308	0.009	0.976	0.947	0.909	-1.121

- t_i 's are not necessarily consistent with the sampling times $k\delta$
- measurement errors are assumed to be 0.01, *i.e.*, $\forall t_i, \mathbf{x}(t_i) \in \tilde{\mathbf{y}}(t_i) + [-0.01, 0.01]^2$.

 \rightarrow Restrictions on the prior tube $\mathcal{P}(\cdot)\text{, i.e. }\check{\mathbb{X}}(\cdot)$

Resulting polygonal envelop

Forward computation One observation $\delta = 0.01$

Computation time: ${\sim}2s$

Resulting polygonal envelop

Resulting polygonal envelop

Convergence to exact enclosure, with respect to δ

Section 5

Conclusion

Conclusion Outline

New state estimator to approximate the state of a continuous-time linear system in a set-membership context, with a set of discrete measurements.

New state estimator to approximate the state of a continuous-time linear system in a set-membership context, with a set of discrete measurements.

The proposed method is:

- accurate:

direct extension of the exact method used for discrete time systems,

- guaranteed:

propagation of uncertainties made by interval analysis,

- **exact** if δ infinitely small,

since it does not introduce any pessimism.

Limits

On dimensions:

Limits

On dimensions:

Limits

On dimensions:

Limits

On dimensions:

Limits

On dimensions:

Limits

On dimensions:

Limits

On dimensions:

– polygonal implementation \rightarrow difficult task, restricted to 2d cases at the moment

On computation time:

- number of vertices: simplification of polygons.

Limits

On dimensions:

– polygonal implementation \rightarrow difficult task, restricted to 2d cases at the moment

On computation time:

- number of vertices: simplification of polygons.

On systems:

- the method cannot be extended directly to non-linear systems,
- the system must be time-invariant (computation of $e^{\mathbf{A}t}$).

Alternative to polygons: ellipsoids

Collaboration with Andreas Rauh.

An ellipsoidal predictor-corrector state estimation scheme for linear continuous-time systems with bounded parameters and bounded measurement errors

A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022

Alternative to polygons: ellipsoids

Collaboration with Andreas Rauh.

An ellipsoidal predictor-corrector state estimation scheme for linear continuous-time systems with bounded parameters and bounded measurement errors

A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022

Alternative to polygons: ellipsoids

Collaboration with Andreas Rauh.

An ellipsoidal predictor-corrector state estimation scheme for linear continuous-time systems with bounded parameters and bounded measurement errors

A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022

Code example - Codac library - (C++, Python available)

/* ======= PROBLEM DEFINITION ======== */

double dt = 0.01; auto tdomain = create_tdomain(Interval(0,10), dt, true);

TFunction f_u("cos(t)");

 $\begin{array}{ll} \mbox{Matrix A(\{\{0,1\},\{-1,-1\}\});} \\ \mbox{Vector b(\{0,1\});} \end{array}$

Code example – Codac library – (C++, Python available)

```
/* ======= PROBLEM DEFINITION ======== */
```

```
double dt = 0.01;
auto tdomain = create tdomain(Interval(0,10), dt, true);
```

```
TFunction f_u("cos(t)");
```

```
Matrix A({\{0,1\}, \{-1,-1\}\});
Vector b({\{0,1\});
```

```
/* ======== SIMULATING THE TRUTH ======== */
```

```
 \begin{array}{l} \mbox{TrajectoryVector $x$ truth(tdomain $>$t0$ tf(), TFunction("( $$ sin(t) - (2*exp[-t/2)*sin((sqrt(3)*t]/2))/sqrt(3) ; $$ exp(-t/2)*sin(sqrt(3)*t/2)/sqrt(3)-sin(t)/2+sin(t)/2+cos(t)-exp(-t/2)*cos(sqrt(3)*t/2) $$ ), $$ dt(10.); $$ \end{array}
```

Code example - Codac library - (C++, Python available)

```
/* ======= PROBLEM DEFINITION ======== */
```

```
double dt = 0.01;
auto tdomain = create_tdomain(Interval(0,10), dt, true);
```

```
TFunction f_u("cos(t)");
```

```
Matrix A({\{0,1\}, \{-1,-1\}\});
Vector b({\{0,1\});
```

```
/* ======== SIMULATING THE TRUTH ======== */
```

/* ======== CREATING TUBES ======== */

 $\begin{array}{l} Tube < Convex Polygon > x(tdomain); \\ x. set(Convex Polygon(Vector({0,0.})), 0.); // setting initial condition \\ Tube < Interval > u(tdomain, f_u); \\ u. inflate (0.1); // u* + [-0.1,0.1] \end{array}$

Code example - Codac library - (C++, Python available)

```
/* ======= PROBLEM DEFINITION ======== */
```

```
double dt = 0.01;
auto tdomain = create tdomain(Interval(0,10), dt, true);
```

```
TFunction f_u("cos(t)");
```

```
Matrix A({\{0,1\}, \{-1,-1\}\});
Vector b({\{0,1\});
```

```
/* ======== SIMULATING THE TRUTH ======== */
```

 $\begin{array}{l} \mbox{TrajectoryVector x truth(tdomain $>$t0$ tf(), TFunction("($$ sin(t) - (2*exp[-t/2)*sin((sqrt(3)*t]/2))/sqrt(3) ; $$ exp(-t/2)*sin(sqrt(3)*t/2)/sqrt(3)-sin(t)/2+sin(t)/2+cos(t)-exp(-t/2)*cos(sqrt(3)*t/2) $$), $$ dt(10.); $$ the set of t$

/* ======== CREATING TUBES ======= */

 $\begin{array}{l} Tube{ConvexPolygon} > x(tdomain); \\ x.set(ConvexPolygon(Vector({0.0.})), 0.); // setting initial condition \\ Tube{Interval} > u(tdomain, f_u); \\ u.inflate (0.1); // u* + [-0.1,0.1] \end{array}$

```
CtcLinobs ctc_linobs(A, b);
ctc_linobs.contract(x, u, TimePropag::FORWARD | TimePropag::BACKWARD);
//
```

Exact bounded-error continuous-time linear state estimator S. Rohou, L. Jaulin, *Systems & Control Letters*, 2021

Questions?