Inner and outer characterization of the projection of polynomial equations using symmetries, quotients and intervals

L. Jaulin

AID meeting, 22-23 november 2022 Palaiseau, IMT

Motivation

Consider the set

$$\mathbb{X} = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{f}(\mathbf{x}) = \mathbf{0} \}$$

where $\mathbf{f}:\mathbb{R}^n\mapsto\mathbb{R}^\ell$ is composed with polynomials. We want to characterize

$$\mathbb{P}^{[\mathbf{q}]} = \{\mathbf{p} \in \mathbb{R}^m | \exists \mathbf{q} \in [\mathbf{q}], \mathbf{f}(\mathbf{p}, \mathbf{q}) = \mathbf{0}\}$$

(日)

500

where $\mathbf{x} = (\mathbf{p}, \mathbf{q})$ and $[\mathbf{q}]$ is a box of \mathbb{R}^{ℓ} .

Example.

$$f(x_1, x_2) = x_1^4 + x_2^4 + 2x_1^2x_2^2 - 48x_1x_2 - 12x_2^2 + 8x_1^2 + 144$$

$$\mathbf{x} = (x_1, x_2) = (p, q).$$

 $\mathbb{P}^{[q]} = \{ p \in \mathbb{R} | \exists q \in [q], f(p, q) = 0 \},$

Motivation

Theory Projection method Applications

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

When X have symmetries, minimal contractors can be found [1]

●●● Ⅲ ▲田▼ ▲田▼ ▲田▼

Now, minimality of contractors is preserved by projection ...

Motivation

Theory Projection method Applications

Theory

Quotient

(日) (日) (日) (日) (日) (日) (日)

$$\sigma_1 \sim \sigma_2 \Leftrightarrow arphi(\sigma_1) = arphi(\sigma_2)$$

 \sim is the equivalence kernel of arphi

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From the projection theorem, there exists a *choice function* ψ . The images $\psi(\varepsilon)$ by ψ are the *representative*.

<ロ> <部> <部> <き> <き> <

э

$$\mathcal{Q} = \frac{\mathscr{S}}{\sim}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Quadrants

Interval extension of the sign If $[\mathbf{q}]=[-1,2]\times[1,2]\times[-2,2],$ then

$$sgn([\mathbf{q}]) = [-,+] \times [+,+] \times [-,+]] \\= \{(-+-),(-++),(++-]),(+++])\} \\= \left\{ \begin{pmatrix} \mathbb{R}^{-} \\ \mathbb{R}^{+} \\ \mathbb{R}^{-} \end{pmatrix}, \begin{pmatrix} \mathbb{R}^{-} \\ \mathbb{R}^{+} \\ \mathbb{R}^{+} \end{pmatrix}, \begin{pmatrix} \mathbb{R}^{+} \\ \mathbb{R}^{+} \\ \mathbb{R}^{-} \end{pmatrix}, \begin{pmatrix} \mathbb{R}^{+} \\ \mathbb{R}^{+} \\ \mathbb{R}^{-} \end{pmatrix}, \begin{pmatrix} \mathbb{R}^{+} \\ \mathbb{R}^{+} \\ \mathbb{R}^{+} \end{pmatrix} \right\}$$

Action

Action of σ on the set $\mathbb X$ as

$$\sigma \mathbb{X} = \{ \mathsf{y} \, | \, \sigma^{-1}(\mathsf{y}) \in \mathbb{X} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The set \mathbb{X} is symmetric with respect to σ if $\sigma \mathbb{X} = \mathbb{X}$.

Moore family

 \mathbb{IM} is a Moore family of \mathbb{R}^n if

$$[a](1) \in \mathbb{IM}, [a](2) \in \mathbb{IM}, \dots \Rightarrow \bigcap_{i} [a](i) \in \mathbb{IM}$$

Contractors can be generalized [2] to Moore abstract domains.

A group of symmetries $\Sigma = \{\sigma_1, \sigma_2, \dots\}$ is IM-conservative if

$$\sigma \in \Sigma, [a] \in \mathbb{IM} \Rightarrow \sigma[a] \in \mathbb{IM}$$

For instance a rotation of $k\frac{\pi}{4}$ is octogone conservative.

A Moore family can (often) be generated by

- a generator (a subset of \mathbb{R}^n)
- a group of symmetries $\Sigma = \{\sigma_1, \sigma_2, \dots\}$

For instance, boxes can be generated by

- ullet the unit cube $[-1,1]^n$
- scales and translations.

For instance, octogones can be generated by

- ullet the unit cube $[-1,1]^n$
- scales, translations and rotations of $k\frac{\pi}{4}$.

Factorizability

<ロ> <同> <同> <同> <同> < 同> < 同> <

æ

A set $\mathbb{X} \subset \mathbb{R}^n$ is Σ -factorizable if

$$\mathbb{X} = \sigma_1 \mathbb{X}_1 \cup \cdots \cup \sigma_k \mathbb{X}_k$$

where minimal contractors exist for the X_i 's

Example. Take

$$\mathbb{X} = \left\{ \mathbf{x} \in \mathbb{R}^{n} | x_{1}^{4} + x_{2}^{4} + 2x_{1}^{2}x_{2}^{2} - 48x_{1}x_{2} - 12x_{2}^{2} + 8x_{1}^{2} + 144 = 0 \right\}$$

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

$$\begin{split} \mathbb{X}_1 &= \left\{ \mathbf{x} \in \mathbb{R}^n | (x_1 - 2)^2 + (x_2 - 3)^2 - 1 = 0 \right\} \\ &\sigma(x_1, x_2) = (-x_1, -x_2) \\ &\sigma \mathbb{X}_1 = \left\{ \mathbf{x} \in \mathbb{R}^n | (x_1 + 2)^2 + (x_2 + 3)^2 - 1 = 0 \right\} \end{split}$$

Factorization:

$$\mathbb{X} = \mathbb{X}_1 \cup \sigma \mathbb{X}_1$$

◆□ → ◆□ → ◆三 → ◆三 → 三 三

Hyperoctahedral symmetries

 B_n which is the group of symmetries of the hypercube $[-1,1]^n$. Example :

$$\sigma(x_1, x_2, x_3, x_4, x_5) = (-x_2, x_1, x_5, -x_4, x_3).$$

(日) (종) (종) (종) (종) (종)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Multiplication :

$$\mathbf{u} \cdot \mathbf{v} = (\operatorname{sign}(v_1) \cdot u_{|v_1|}, \dots, \operatorname{sign}(v_n) \cdot u_{|v_n|}).$$

◆□ > ◆舂 > ◆き > ◆き >

æ

Projection method
Separability

A symmetry $\sigma \in B_n$ is separable if $\sigma = (\sigma_p, \sigma_q)$, where σ_p, σ_q are symmetries in the p-space and the q-space respectively.

The group of all $\sigma \in B_n$ that are symmetries for \mathbb{X} is denoted by $B_n(\mathbb{X})$.

$$B_2(\mathbb{X}) = \{(1,2), (-1,-2)\}.$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ▲□ ▶ ◆□ ♥

Quotient

Define $\varphi(\sigma_{\mathbf{p}}, \sigma_{\mathbf{q}}) = \operatorname{sign}(\sigma_{\mathbf{q}})$. For instance, for $\dim \mathbf{p} = 2$,

$$\varphi(2,1,-4,3,6,-5) = \operatorname{sign}(-4,3,6,-5) = (-++-).$$

Define

$$\mathscr{Q} = \frac{sep(B_n(\mathbb{X}))}{\sim}.$$

where \sim is the equivalence kernel of φ . \mathscr{Q} gives us the symmetries to move from one **q**-quadrant to the positive **q**-quadrant.

Choice function ψ

For our two-disks example:

$$B_{2} = \{(-1,-2),(-1,2),\dots,(2,-1),(2,1)\}$$

$$sep(B_{2}) = \{(-1,-2),(-1,2),(1,-2),(1,2)\}$$

$$sep(B_{2}(\mathbb{X})) = \{(-1,-2),(1,2)\}$$

$$\mathcal{Q} = \{(-1,-2),(1,2)\}$$

$$\psi(-) = (-1,-2)$$

$$\psi(+) = (1,2)$$

Proposition. Consider $\sigma = \sigma_{\mathbf{p}} \times \sigma_{\mathbf{q}} \in sep(B_n(\mathbb{X}))$ and

$$\mathbb{P}^{[\mathbf{q}]} = \{\mathbf{p} \in \mathbb{R}^m | \exists \mathbf{q} \in [\mathbf{q}], (\mathbf{p}, \mathbf{q}) \in \mathbb{X}\}$$

We have

$$\mathbb{P}^{[\mathbf{q}]} = \sigma_{\mathbf{p}} \mathbb{P}^{\sigma_{\mathbf{q}}[\mathbf{q}]}.$$

$$\sigma = (-1, -2)$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ▲□ ▶ ◆□ ♥

Theorem. Assume that $dom(\psi) = [-,+]^{\ell}$. We have

$$\mathbb{P}^{[\mathbf{q}]} = \bigcup_{\sigma \in \psi(\textit{sign}([\mathbf{q}]))} \sigma_{\mathbf{p}} \mathbb{P}^{(\mathbb{R}^{+\ell}) \cap \sigma_{\mathbf{q}}[\mathbf{q}]}$$

Consequence. From a contractor working for $[\mathbf{q}] \subset \mathbb{R}^{n+}$, if we have enough symmetries, we have a contractor for any $[\mathbf{q}] \subset \mathbb{R}^{n}$

Compute $sep(B_n(X))$

$\begin{array}{ll} \mathsf{x} \in \mathbb{X}, \sigma(\mathsf{x}) \notin \mathbb{X} & \Rightarrow & \sigma \notin B_n(\mathbb{X}) \\ \sigma_1 \in B_n(\mathbb{X}), \sigma_2 \in B_n(\mathbb{X}) & \Rightarrow & \sigma_1 \sigma_2 \in B_n(\mathbb{X}) \end{array}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Input:
$$f(p,q)$$
, $\mathscr{X} = \{x_1, x_2, ...\}$, $\mathscr{S} = \{\sigma_1, \sigma_2, ...\}$ 1 $m = \dim p; \ \ell = \dim q; \ n = m + \ell$ 2Generate the list \mathscr{B} of all symmetries in B_n 3Remove from \mathscr{B} all σ that are not separable4Remove from \mathscr{B} all σ such that $\sigma(x_i) \notin \mathbb{X}$ for some $x_i \in \mathscr{X}$ 5Compute the group $\langle \mathscr{S} \rangle$ generated by \mathscr{S} 6If $\mathscr{B} = \langle \mathscr{S} \rangle$ then return \mathscr{B} 7return "Fail: add symmetries to \mathscr{S} or solutions to \mathscr{X} ".

Build the choice function ψ

Input:
$$\mathscr{Q}$$

1 For each (σ_1, σ_2) of \mathscr{S} such that $\varphi(\sigma_1) = \varphi(\sigma_2)$,
remove σ_2 from \mathscr{Q} .
2 For each $\varepsilon \in [-, +]^{\ell}$, define $\psi(\varepsilon) = \varphi_{|\mathscr{Q}|}^{-1}$.
3 return ψ

Rotate

Consider the *rotate* constraint

$$\begin{cases} x_3x_1 - x_4x_2 - x_5 &= 0\\ x_4x_1 + x_3x_2 - x_6 &= 0\\ x_3^2 + x_4^2 - 1 &= 0 \end{cases}$$

$$\begin{cases} x_3x_1 - x_4x_2 - x_5 &= 0\\ x_4x_1 + x_3x_2 - x_6 &= 0\\ x_3^2 + x_4^2 - 1 &= 0 \end{cases} \Leftrightarrow \begin{cases} x_3x_5 + x_4x_6 - x_1 &= 0\\ -x_4x_5 + x_3x_6 - x_2 &= 0\\ x_3^2 + (-x_4)^2 - 1 &= 0 \end{cases}$$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

Consider the *rotate* constraint:

$$\begin{cases} q_1 p_1 - q_2 p_2 &= q_4 \\ q_2 p_1 + q_1 p_2 &= q_5 \\ q_1^2 + q_2^2 - 1 &= 0 \end{cases}$$

We get 46080 elements for B_6 . To find $B_6(\mathbb{X})$, we took

$$\mathscr{S} = \left\{ (2, -1, -4, 3, 5, 6), (1, -2, 3, -4, 5, -6), (-1, -2, -4, 3, 6, -5) \right\}.$$

ヘロト ヘ週ト ヘヨト ヘヨト

We also provided an element of $\ensuremath{\mathbb{X}}$

$$\mathbf{x}_1 = \left(2, 4, \frac{1}{2}, \frac{\sqrt{3}}{2}, 1 - 2\sqrt{3}, \sqrt{3} + 2\right).$$

We get a list of 32 elements for the group $sep(B_6(\mathbb{X}))$.

Note that $\sigma = \psi(+--+) = (-1, 2, 3, -4, -5, 6)$, corresponds to:

$$\begin{pmatrix} q_1p_1 - q_2p_2 - q_4 \\ q_2p_1 + q_1p_2 - q_5 \\ q_1^2 + q_2^2 - 1 \end{pmatrix} = \mathbf{0} \Leftrightarrow \begin{pmatrix} q_1(-p_1) - (-q_2)p_2 - (-q_4) \\ (-q_2)(-p_1) + q_1p_2 - q_5 \\ q_1^2 + (-q_2)^2 - 1 \end{pmatrix} = \mathbf{0}$$

 σ transports the quadrant (+--+) of the q-space to (++++).

Positive quadrant

- We use a boundary approach
- We take advantage of the monotonicity
- The union of minimal contractors is minimal

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

All quadrants

Take

$$\begin{split} [\mathbf{q}] &= (\cos([\theta]), \sin([\theta]), [-10, 10], [5, 12]) \, . \\ \text{with } [\theta] &= [3, 4] . \\ \text{We have} \\ \mathbb{P}^{[\mathbf{q}]} &= \bigcup_{\sigma \in \psi(sign([\mathbf{q}]))} \sigma_{\mathbf{p}} \mathbb{P}^{\mathbb{R}^{+4} \cap \sigma_{\mathbf{q}}[\mathbf{q}]} . \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Applications

Workspace

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

We consider a polygon ${\mathscr M}$ with coordinates

i.e.,

$$\mathscr{M} = \underbrace{\left([5,10] \times [-8,8] \right)}_{=[\mathbf{m}](1)} \cup \underbrace{\left([-4,11] \times [8,10] \right)}_{=[\mathbf{m}](2)}.$$

The object can rotates around **0** with an angle $\theta \in [\theta] = [0.5, 1.5]$. The workspace [4] corresponds to all space that can occupy the object.

Define

i	1	2	
$[q_1](i)$	cos([0.5, 1.5])	cos([0.5, 1.5])	
$[q_2](i)$	sin([0.5, 1.5])	sin([0.5, 1.5])	
$[q_3](i)$	[5,10]	[-8,8]	
$[q_4](i)$	[-4, 11]	[8,10]	

◆□ → ◆□ → ▲目 → ▲目 → ● ● ●

The workspace is

$$\mathbb{P} = \bigcup_{i \in \{1,2\}} \mathbb{P}_i$$

where

$$\mathbb{P}_i = \left\{ \mathbf{p} \in \mathbb{R}^2 \, | \, \exists \mathbf{q} \in [\mathbf{q}](i), \, \textit{rotate}(\mathbf{p}, \mathbf{q}) \right\}$$

E 990

Speed estimation

An object moves with an unknown speed ${\bf v}.$ The speed is measured by 6 robots.

In their own frame, each robot returns a box [y] enclosing the speed vector.

The heading of the *i*th robot θ_i is badly known.

i	1	2	3	4	5	6
θ_i	[1,2]	[2,3]	[3,4]	[-0,1]	[-2, -1]	[-3, -2]
y_1^i	13 ± 1	-1 ± 1	-9 ± 1	11 ± 1	-7 ± 1	-13 ± 1
y_2^i	-5 ± 1	-15 ± 1	-11 ± 1	9 ± 1	11 ± 1	3 ± 1

The set of all feasible speed vectors is

$$\mathbb{V} = \bigcap_{i \in \{1,...,6\}} \mathbb{V}_i$$

where

$$\mathbb{V}_i = \left\{ \mathbf{v} \in \mathbb{R}^2 \, | \, \exists \mathbf{q} \in [\mathbf{q}](i), \, \textit{rotate}(\mathbf{v}, \mathbf{q}) \right\}$$

and

$$[\mathbf{q}](i) = \cos([\theta^i]) \times \sin([\theta^i]) \times [y_1^i] \times [y_2^i]$$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

Estimation of the speed vector $\overset{(a)}{\longrightarrow} \overset{(a)}{\longrightarrow} \overset{($

Define the relaxed intersection [3] as

$$\mathbb{V}^{\{k\}} = \bigcap_{i \in \{1,\dots,6\}}^{\{k\}} \mathbb{V}_i$$

L. Jaulin.

Actions of the hyperoctahedral group to compute minimal contractors.

Artificial Intelligence (submitted), 2022.

- L. Jaulin, B. Desrochers, and D. Massé.
 Bisectable Abstract Domains for the resolution of equations involving complex numbers.
 Reliable Computing, 23:35-46, 2016.
- 📄 L. Jaulin and E. Walter.

Guaranteed robust nonlinear minimax estimation.

IEEE Transaction on Automatic Control, 47(11):1857–1864, 2002.

🔋 J. Merlet and D. Daney.

Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace.

In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, April 18-22, 2005, Barcelona, Spain, pages 942–947. IEEE, 2005.