
MODELS / MPM4CPS’22
Montreal – 23/10/2022

Séminaire FARO 23/11/2022



  

2Our Robotics Systems
● Mobile robots in different domains : industry / 
transport / production, assistive robotics, services
1 LeoRover

 2 Pioneer3DX

5 NDA... 4 Biggard 3 Octopus-Biosafety

ROS INSIDE



  

3… Marine and Sub-marine Drones
● … Autonomous robots

6 RTSys

7 IMS

WHY ROS ...?

8 E-Cobot

ROS INSIDE



  

4ROS = Robot Operating System
● Middleware to ease the 

programming of robots
– Standard synchronization and 

communication mechanisms to 
hide low-level OS services

– Multi-platform / multi-OS

lidar
node

depth cam
node

teleop
node

obstacle detect
node

robot base
node

mapping
node



  

5ROS because ...
– Simplifies and accelerates the development of robots SW & HW

– Standard with many sensors and robots hardware

– Used in industry : demand from our clients / partners

– Set of tools for developing, monitoring, debugging
● Nodes connections, frame transformations ...



  

6Visualization and Simulation
● More tools for multi-physical simulation (Gazebo, Morse …)
● Digital twins in the development process



  

7BUT … Help is Needed ...
● Many services and relations
– With many parameters
– Difficult to represent

● Many deployment solutions
– Which computer boards ?
– Which services + parameters ? 
– Large design space

● Difficulty to explore
● Especially for non Real Time 

Embedded Systems experts



  

8And we face … Performance Issues
● Non functioning or 
malfunctioning robots

– The robot is too slow, or loses its 
way, or its target

– We observe : 
● High CPU load
● Slow communications
● Missed deadlines



  

9Our Needs
● A comprehensive view of the whole application = a model
– The software: a set of ROS nodes interacting
– The hardware: the robot, its sensors, and embedded computer boards

● A tool to perform performance analysis from the model
– Timing : schedulability & latency
– CPU load analysis
– BUS load analysis
– ASAP in the development cycle

● A library of components to ease and speed the building of complex 
models

– Something simple, fast and accurate : simple & fast modeling, analysis, profiling 



  

10Our Choice
● AADL (Architecture Analysis and Design Language)
– Covers the domain of Cyber-Physical Systems (CPS, including robotics) 

with a focus on real-time embedded systems including:
● Software components (process, thread, data, port …)
● Hardware components (processor, bus, memory, devices …)
● Deployment specification with bindings : specify to which HW component(s) a SW 

component is bound to

– Embeds in its heart several paradigms, making it a multi-paradigm 
modeling language allowing to cover several parts / aspects of CPSs

● It is Object-Oriented (OO), which is very helpful in building component libraries
● Synchronous Data Flow (SDF) through its data port construct
● Discrete Event Dynamic Systems (DEv) through its event data port construct and its 

DEVs Annex (DA, among others)



  

11Multi-Paradigm Modeling for CPSs
● Modeling paradigms as generalization of 
programming paradigms

● Principles:
– Model every part and aspect of a system explicitly
– At the most appropriate level(s) of abstraction, with the most 

appropriate modeling formalism(s) for the activity
– Do not try build a single modeling language that captures 

everything
– Combine the most appropriate formalisms and workflows



  

12Modeling Modeling and Workflows
● FTG+PM (Formalisms Transformation Graph + Process Model)

From D. Istvan, J. Denl and H. Vangheluwe, “Towards Inconsistency Management by Process-Oriented 
Dependency Modeling”



  

13Realistic FTG+PM
● Automotive power window 



  

14Our Workflow
● From a deployed system 
model

– Run different analyses 
depending on the properties 
in the components models

● E.g. CPU vs BUS load

– Iterative exploration process

● If component not in lib.
– dev. new model  profiling & ⇒

benchmarking



  

15SLAM Robot AADL Models
● Graphical concrete syntax



  

16Graphical Textual Syntax
● Blended modeling



  

17Our AADL Library
● Models for software components organized in packages according to ROS 
based applications
● ROS nodes and complex services from mainstream ROS distributions / ROS data types and 

messages / ROS synchronization and communication mechanisms

● Models for hardware components
– SBC : Jetson Xavier, Nano, Odroid XU4, Raspberry Pi4, Pi3 … / SoC : Exynos 5422, 

Broadcom BCM2711 … / SoPC : Xilinx, Altera with hardcores/softcores (PowerPC, 
µBlaze, NIOS …) / Robots : (Pioneer3DX, LeoRover, TurtleBot …)

– Example of lib. package tree for a complete robotic app.



  

18Profiling a ROS Node
● Launch the node, in realistic situation and setting
– CPU frequency : cpufreq-set ...

– CPU affinity : launch-prefix="taskset -c 5,6,7" …

– Process scheduling policy & priority : chrt -f -p 15 PID ...

● Record performance for different durations 
– Perf stat -p PID -- sleep duration

● Using scripts (shell, awk …)  



  

19Analysis with OSATE (Main AADL Tool)

● Deployment 1

● Results
– Processor p3dx.(...).big proc1: Total MIPS 140.545 MIPS of bound tasks within MIPS capacity 2.000 

GIPS of p3dx.(...).big proc1 : CPU load is 7.03%
– Processor p3dx.(...).big proc2: Total MIPS 2.242 GIPS of bound tasks exceeds MIPS capacity 2.000 

GIPS : CPU load is 112.10%
– Processor p3dx.(...).little proc1: Total MIPS 7.380 MIPS of bound tasks within MIPS capacity 1.100 

GIPS of p3dx.(...).little proc1 : CPU load is 0.67%

●  ⇒ Change deployment !
– ocv_color_tracking now bound to A15.2,3,4

A15.1: usbcam

A15.2: ocv_color_tracking

A7.1: pos_to_cmd

A7.2: sonar_alert

A15.3: 

A15.4: 

A7.3: rosaria

A7.3: roscore



  

20Analysis vs Measurements
● mpstat …

… and a few scripts

A15.1: usbcam

A15.2: ocv_color_tracking

A7.1: pos_to_cmd

A7.2: sonar_alert

A15.3: ocv_color_tracking 

A15.4: ocv_color_tracking 

A7.3: rosaria

A7.3: roscore



  

21Profiling Bus Capacities
● Experimental setup : producer → listener with 
growing messages sizes and rates

A15 cores
BW capacity
vs CPU affinity



  

22To Conclude
● An AADL library of ROS components with dedicated properties to 
allow for multiple analysis

– Using OSATE
● Resource allocation analysis

– CPU load / Bus load / Memory capacities / Power consumption / Weights

● Timing (flow latency) and scheduling analysis

Very useful for industrial robotics applications

● Workflow
– Choosing hardware targets & software architectures
– Exploring binding solutions / balancing between CPU vs Bus load
– To guarantee reaction time for robotic applications
– Generate code



  

23RAMSES
● Refinement of AADL Models for the Synthesis of Embedded Systems



  

24Future Work

● Automatic code generation for ROS
● Based on AADL library

● Modular architecture of RAMSES
– Open source core
– Develop ROS extension (Eclipse plugins)


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

